Highly diastereoselective aldol additions to five-ring N, O-acetals

Martin Brunner and Ari M. P. Koskinen*
Laboratory of Organic Chemistry, Helsinki University of Technology, FIN-02150 Espoo, Finland

Received 9 January 2004; revised 13 February 2004; accepted 19 February 2004

Abstract

Highly diastereoselective aldol additions of pure ($2 R, 4 S$)-2-tert-butyloxazolidinone-3,4-dicarboxylic acid 3-tert-butyl ester 4-methyl ester $\mathbf{1}$ are reported. While achiral carbonyl compounds lead to mixtures of diastereomers, the double stereodifferentiation of chiral aldehydes gave a single product isomer. The relative and absolute configurations of the aldol products were assigned by NOESY.

© 2004 Elsevier Ltd. All rights reserved.

In the course of our studies toward new synthetic routes for sphingosine ${ }^{1}$ and structurally related but more elaborate metabolites like myriocin, ${ }^{2}$ mycestericins, ${ }^{3}$ and sphingofungins ${ }^{4}$ we became interested in α-substituted β-hydroxy amino acids. ${ }^{5}$ As a strategy to obtain these compounds stereoselectively, we chose to utilize the principle of self-regeneration of stereocenters (SRS). ${ }^{6}$ For our purposes, L-serine is the convenient starting material since it already contains all the necessary functionalities of the hydrophilic end of the abovementioned metabolites. For stereoselective aldol addition at the α-carbon of this particular amino acid, it is necessary to introduce a stereocenter transiently, which can be achieved by forming oxazolidines of type 1 .

Myriocin

aldehydes like valeraldehyde or hydrocinnamaldehyde reacted with high conversion ($>90 \%$) and low diastereoselectivity. We observed increased diastereomeric ratios (dr) for isobutyraldehyde, however, with lowered conversion. The more electrophilic anisaldehyde, p-nitrobenzaldehyde, and benzaldehyde yielded the highest drs (Table 1). Aldol additions with long-chain aldehydes like 1-octadecanal or ketones resulted in recovery of nonisomerized starting materials. The pure syn- and anti-diastereomers $\mathbf{2}^{10}$ and $\mathbf{3}^{11}$ from aldol reaction with hydrocinnamaldehyde and valeraldehyde were obtained in equimolar amounts after chromatographic separation. The crude mixtures did not contain further

Recently, during synthetic studies for kaitocephalin, aldol reaction of the same compound with its corresponding aldehyde predominantly yielded one single adduct. ${ }^{9}$

We expected to obtain even better diastereoselectivities with highly substituted N -Boc protected N, O-acetals and, herein, report a new series of aldol products with regeneration of configuration at the original stereocenter.

The aldol reactions with N, O-acetal 1 and aliphatic or aromatic carbonyl compounds were carried out under standard conditions (Scheme 1). ${ }^{7}$ Simple unbranched

[^0]Aldol additions of the Li-enolate of N-formyl protected five-ring N, O-acetals to acetone and benzaldehyde resulted in one single isomer but with the more hindered benzophenone no adduct was formed at all. ${ }^{6,7}$ When isobutyraldehyde was added to the Li -enolate of an N -benzyl-protected N, O-acetal, the corresponding β-hydroxy amino ester was obtained in $>98 \%$ diastereomeric purity and 51% yield after recrystallization. ${ }^{8}$

Scheme 1.

Table 1. Diastereoselectivity of aldol additions

Entry	Carbonyl compound	Conversion (\%)	Product		
				$d r^{\mathrm{a}}$	
1	Hydrocinnamaldehyde	100	$\mathbf{2}$	$1 / 1$	$1 / 1$
2	Valeraldehyde	95	$\mathbf{3}$	$3 / 2$	$1 / 1$
3	Isobutyraldehyde	25	$\mathbf{4}$	$9 / 1$	
4	Pivalaldehyde	10	$\mathbf{5}$	$3 / 1$	$3 / 2$
5	Anisaldehyde	95	$\mathbf{6}$	$3 / 2$	$10 / 1$
6	Benzaldehyde	100	$\mathbf{7}$	$>23 / 1$	1 isomer
7	p-Nitrobenzaldehyde	100	$\mathbf{8}$	$5 / 1$	$5 / 1$

${ }^{\text {a }} d r$: Diastereomeric ratio pure syn- and anti-diastereomers $\mathbf{2}^{10}$ and $\mathbf{3}^{11}$ from aldol reaction with hydrocinnamaldehyde and valeraldehyde.
products according to NMR data, but traces of starting material $(<10 \%)$ were usually present.

The ${ }^{1} \mathrm{H}$ NMR spectra of the $s y n-$ and anti-diastereomers of both 2 and 3 show characteristic signals and the chemical shifts differ considerably. The β-methine proton at Cl^{\prime} in the $s y n$-isomer $\mathbf{2 b}$ is shifted 0.67 ppm upfield.

Reagent controlled stereoselectivity is well known to direct product distributions. ${ }^{12}$ However, diastereomeric ratios for syn/anti-products $\mathbf{2 - 8}$ improved only slightly when we used bases different from LDA. The increase in selectivity was often accompanied by a decrease in yield. Usually, a preference for the syn-product $\mathbf{2 b}$ was observed when we used alkali metal containing bases, but for tin chloride the selectivity (dr 2/1) was in favor of the anti-product $2 \mathbf{2 a}$.

When we added the chiral enolate of $\mathbf{1}$ to the reactive chiral β-substituted aldehyde $\mathbf{9}^{13}$ less than 50% of the starting material was converted, but we obtained only the single syn-Felkin diastereomer $\mathbf{1 1}^{14}$ in 25% yield (Scheme 2). ${ }^{15}$ The β-hydroxy ester 11 is prone to retroaldol reaction under the reaction conditions used and slow decomposition of $\mathbf{1 1}$ was observed when stored at $+5^{\circ} \mathrm{C}$.

The relative configuration of the syn-diastereomer 11 was assigned from NOESY experiments where an observed correlation of the methyl protons of the Bocgroup and the methine proton at $\mathrm{C} 1^{\prime \prime}$ was indicative of

Scheme 2.
the $4 S, 1^{\prime \prime} R$-configuration, the predicted product of the favorable Zimmerman-Traxler ${ }^{16}$ transition state 10a, although the 1,3-dioxane ring of 9 adopts the axial position. The close proximity of the aldehyde substituent and the methylene protons of $\mathbf{1}$ in $\mathbf{1 0 a}$ favors the unusual conformation (Scheme 2).

In the aldol product $\mathbf{1 1}$, the methine proton at $\mathrm{C} 1^{\prime \prime}$ splits in benzene- d_{6} even at $60^{\circ} \mathrm{C}$ into a doublet of doublets at $\delta 4.80 \mathrm{ppm}$ with $J=7.0 \mathrm{~Hz}$, which corresponds to a dihedral angle of ca. 30° for $\mathrm{H}-\mathrm{C} 4^{\prime}-\mathrm{C} 1^{\prime \prime}-\mathrm{H},{ }^{17}$ and $J=2.6 \mathrm{~Hz}$, which is characteristic for a long-range coupling in a fixed conformation in a condensed alicyclic system. ${ }^{18}$

Acknowledgements

This research was financially supported by the Ministry of Education of Finland (Graduate School of Bioorganic Chemistry Program) and the National Technology Agency (TEKES, Finland).

References and notes

1. (a) Koskinen, P. M.; Koskinen, A. M. P. Synthesis 1998, 1075-1091; (b) Koskinen, P. M.; Koskinen, A. M. P. Methods Enzymol. 1999, 311, 458-479.
2. (a) Kluepfel, D.; Bagli, J.; Baker, H.; Charest, M.-P.; Kudelski, A.; Sehgal, S. N.; Vézina, C. J. Antibiot. 1972, 25, 109-115; (b) Aragozzini, F.; Manachini, P. L.; Craveri, R.; Rindone, B.; Scolastico, C. Tetrahedron 1972, 28, 5493-5498; (c) Fujita, T.; Inoue, K.; Yamamoto, S.; Ikumoto, T.; Sasaki, S.; Toyama, R.; Chiba, K.; Hoshino, Y.; Okumoto, T. J. Antibiot. 1994, 47, 208-215.
3. (a) Sasaki, S.; Hashimoto, R.; Kiuchi, M.; Inoue, K.; Ikumoto, T.; Hirose, R.; Chiba, K.; Hoshino, Y.; Okumoto, T.; Fujita, T. J. Antibiot. 1994, 47, 420-433; (b) Fujita, T.; Hamamichi, N.; Kiuchi, M.; Matsuzaki, T.; Kitao, Y.; Inoue, K.; Hirose, R.; Yoneta, M.; Sasaki, S.; Chiba, K. J. Antibiot. 1996, 49, 846-853.
4. (a) VanMiddlesworth, F.; Giacobbe, R. A.; Lopez, M.; Garrity, G.; Bland, J. A.; Bartizal, K.; Fromtling, R. A.; Polishook, J.; Zweerink, M.; Edison, A. M.; Rozdilsky, W.; Wilson, K. E.; Monaghan, R. L. J. Antibiot. 1992, 45, 861-867; (b) Horn, W. S.; Smith, J. L.; Bills, G. F.; Raghoobar, S. L.; Helms, G. L.; Kurtz, M. B.; Marrinan, J. A.; Frommer, B. R.; Thornton, R. A.; Mandala, S. M. J. Antibiot. 1992, 45, 1692-1696.
5. For recent reviews, see: (a) Cativiela, C.; Díaz-de-Villegas, M. D. Tetrahedron: Asymmetry 1998, 9, 3517-3599; (b) Cativiela, C.; Díaz-de-Villegas, M. D. Tetrahedron: Asymmetry 2000, 11, 645-732.
6. Seebach, D.; Sting, A. R.; Hoffmann, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2708-2748.
7. (a) Seebach, D.; Aebi, J. D. Tetrahedron Lett. 1984, 25, 2545-2548; (b) Seebach, D.; Aebi, J. D.; Gander-Coquoz, M.; Naef, R. Helv. Chim. Acta 1987, 70, 1194-1216.
8. Corey, E. J.; Reichard, G. A. J. Am. Chem. Soc. 1992, 114, 10677-10678.
9. Loh, T.-P.; Chok, Y.-K.; Yin, Z. Tetrahedron Lett. 2001, 42, 7893-7897.
10. ($1^{\prime} R, 2 R, 4 R$)-2-tert-Butyl-4-(1-hydroxy-3-phenylpropyl)-oxazolidine-3,4-dicarboxylic acid 3-tert-butyl ester 4-methyl ester (2a): $\mathbf{1}(203.0 \mathrm{mg}, 0.70 \mathrm{mmol})$ afforded $\mathbf{2 a}$ as a solid ($76.0 \mathrm{mg}, 25 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.29-7.15(\mathrm{~m}, 5$ arom. H), $5.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.60-4.55(\mathrm{br}$ $\mathrm{m}, 2 \mathrm{H}), 4.10(\mathrm{dd}, J=8.4$ and $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.95(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.66(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 1.90(\mathrm{br}$ $\mathrm{m}, 1 \mathrm{H}), 1.49-1.23$ (br m, 10H), 1.00 (s, 9H). ${ }^{13} \mathrm{C}$ NMR (benzene- $\left.d_{6}, 100 \mathrm{MHz}\right) \delta 174.6,153.3,142.5,129.3-127.9$, 126.2, 98.4, 80.9, 70.9, 70.4, 52.2, 39.8, 32.9, 32.1, 28.0, 26.9, 25.0. MS (EI) $m / z 422\left[\mathrm{M}+\mathrm{H}^{+}\right], 364,322,264$ (100%), 231, 186, 130, 101, 91, 57. HRMS (EI) calcd: 420.2408 [M-H ${ }^{+}$], found: 420.2385. $R_{\mathrm{f}} 0.43$ (Hex/EtOAc $4 / 1) .[\alpha]_{\mathrm{D}}^{20}+49\left(c 1, \mathrm{CHCl}_{3}\right)$.
($1^{\prime} S, 2 R, 4 R$)-2-tert-Butyl-4-(1-hydroxy-3-phenylpropyl)-oxazolidine-3,4-dicarboxylic acid 3 tert-butyl ester 4-methyl ester (2b): $1(203.0 \mathrm{mg}, 0.70 \mathrm{mmol})$ afforded 2b as brown oil $(79.0 \mathrm{mg}, 26 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$,
$400 \mathrm{MHz}) \delta 7.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.23(\mathrm{~s}$, $1 \mathrm{H}), 4.38(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.68(\mathrm{~m}$, $1 \mathrm{H}), 2.07-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.2,155.7,141.9,128.6$, $128.5,128.4,128.3,125.9,99.4,82.4,75.2,74.2,52.6$, 39.3, 32.7, 32.4, 28.2, 26.6. MS (EI) $m / z 422\left[\mathrm{M}+\mathrm{H}^{+}\right]$, 364, 348, 322, 287, 265 (100\%), 246, 231, 201, 186, 159, 145, 134, 101, 91, 79, 57. LCT-ES (g/mol) calcd: $444.2362\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, found: 444.2377. $R_{\mathrm{f}} 0.38$ (Hex/ EtOAc 4/1). $[\alpha]_{\mathrm{D}}^{20}-25\left(c 1, \mathrm{CHCl}_{3}\right)$.
11. ($1^{\prime} R, 2 R, 4 R$)-2-tert-Butyl-4-(1-hydroxypentyl)-oxazolidine-3,4-dicarboxylic acid 3-tert-butyl ester 4-methyl ester (3a): $\mathbf{1}(100.9 \mathrm{mg}, 0.35 \mathrm{mmol})$ afforded 3a as brown oil $(74.4 \mathrm{mg}$, $57 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=8.8$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.48$ (br s, 1H), $1.39(\mathrm{~s}, 9 \mathrm{H}), 1.60-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H})$, $0.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $171.0,153.1,98.0,81.1,77.2,71.3,70.5,52.6,39.3,28.9$, 28.7, 26.5, 22.6, 14.1. MS (EI) $m / z 316\left[\mathrm{M}-58^{+}\right], 300,259$, 242, 231, 217 (100%), 198, 186, 157, 145, 130, 101, 86, 69, 57. LCT-ES (g/mol) calcd: $396.2362\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, found: 396.2364. $R_{\mathrm{f}} 0.49$ (Hex/EtOAc 4/1). $[\alpha]_{\mathrm{D}}^{20}+13\left(c 1, \mathrm{CHCl}_{3}\right)$. ($1^{\prime} S, 2 R, 4 R$)-2-tert-Butyl-4-(1-hydroxypentyl)-oxazolidine-3,4-dicarboxylic acid 3-tert-butyl ester 4-methyl ester (3b): $\mathbf{1}(100.9 \mathrm{mg}, 0.35 \mathrm{mmol})$ afforded $\mathbf{3 b}$ as brown oil $(40.2 \mathrm{mg}$, $31 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ (rotamers) $5.20(\mathrm{~s}$, $1 \mathrm{H}), 4.41(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.48-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 0.88(\mathrm{t}, \quad J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 171.5,155.7,99.5,82.3,78.0,75.3,74.5$, $52.6,39.4,30.9,30.1,29.7,26.6,22.6,13.9$. MS (EI) m / z $316\left[\mathrm{M}-58^{+}\right], 300,260,231,217$ (100\%), 198, 174, 156, 145, 113, 101, 85, 57. LCT-ES ($\mathrm{g} / \mathrm{mol}$) calcd: 396.2362 $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, found: 396.2350. $R_{\mathrm{f}} 0.37$ (Hex/EtOAc 4/1). $[\alpha]_{\mathrm{D}}^{20}$ $-45\left(c 1, \mathrm{CHCl}_{3}\right)$.
12. Van Draanen, N. A.; Arseniyadis, S.; Crimmins, M. T.; Heathcock, C. H. J. Org. Chem. 1991, 56, 2499-2506.
13. Blakemore, P. R.; Kim, S.-K.; Schulze, V. K.; White, J. D.; Yokochi, A. F. T. J. Chem. Soc., Perkin Trans. 1 2001, 1831-1847.
14. ($1^{\prime \prime} R, 2 R, 2^{\prime} R, 4^{\prime} R, 4 R$)-2-tert-Butyl-4-\{hydroxy-[2-(4-meth-oxyphenyl)-[1,3]dioxan-4-yl]methyl $\}$-oxazolidine-3,4-dicarboxylic acid 3-tert butyl ester 4-methyl ester (11): 1 $(70.2 \mathrm{mg}, 0.24 \mathrm{mmol})$ afforded 11 as a brown oil $(25 \mathrm{mg}$, $20 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.35(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2$ arom. H), $6.83(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2$ arom. H), $5.40(\mathrm{~s}, 1 \mathrm{H})$, 4.89 (br s, 1 H), $4.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30(\mathrm{br} \mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.26 (ddd, $J=11.4 / 4.6 / 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, J=12.0$ and $2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H})$, $2.10-1.80(\mathrm{~m}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.28(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (benzene- d_{6}, $100 \mathrm{MHz}) \delta 174.9,161.2,154,132.5,129.4-127.9,114.2$, 103.2, 99.0, 81.5, 78.4, 72.8, 71.3, 68.0, 55.4, 52.8, 40.1, 29.5, 28.7, 27.9. MS (EI) $m / z 510\left[\mathrm{M}+\mathrm{H}^{+}\right], 452,436,352$ (100%), 318, 272, 216, 193, 137, 121, 109, 69, 57. LCT-ES ($\mathrm{g} / \mathrm{mol}$) calcd: $532.2523\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, found: 532.2523. R_{f} 0.49 (Hex/EtOAc 1/1). $[\alpha]_{\mathrm{D}}^{20}+1\left(c 0.33, \mathrm{CHCl}_{3}\right)$.
15. (a) Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9, 2199-2204; (b) Nguyen, T. A.; Eisenstein, O. Nouv. J. Chim. 1977, 1, 61-70; (c) Nguyen, T. A. Top. Curr. Chem. 1980, 88, 145-162.
16. Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920-1923.
17. Karplus, M. J. Chem. Phys. 1959, 30, 11-15.
18. Pretsch, E.; Clerc, T. Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopischen Mitteln; Springer: Berlin, 1990.

[^0]: Keywords: Natural products; Asymmetric synthesis; Myriocin.

 * Corresponding author. Tel.: +358-9-451-2526; fax: +358-9-451-2538;
 e-mail: ari.koskinen@hut.fi

